初中数学《矩形》优秀教案

时间:2018-11-21 16:38:40 大发彩票江苏快3 我要投稿

初中数学《矩形》优秀教案

  一、教学目标:

初中数学《矩形》优秀教案

  1.理解并掌握矩形的判定方法.

  2.使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力

  二、重点、难点

  1.重点:矩形的判定.

  2.难点:矩形的判定及性质的综合应用.

  三、例题的意图分析

  本节课的三个例题都是补充题,例1在的一组判断题是为了让学生加深理解判定矩形的条件,老师们在教学中还可以适当地再增加一些判断的题目;例2是利用矩形知识进行计算;例3是一道矩形的判定题,三个题目从不同的.角度出发,来综合应用矩形定义及判定等知识的.

  四、课堂引入

  1.什么叫做平行四边形?什么叫做矩形?

  2.矩形有哪些性质?

  3.矩形与平行四边形有什么共同之处?有什么不同之处?

  4.事例引入:小华想要做一个矩形像框送给妈妈做生日礼物,于是找来两根长度相等的短木条和两根长度相等的长木条制作,你有什么办法可以检测他做的是矩形像框吗?看看谁的方法可行?

  通过讨论得到矩形的判定方法.

  矩形判定方法1:对角钱相等的平行四边形是矩形.

  矩形判定方法2:有三个角是直角的四边形是矩形.

  (指出:判定一个四边形是矩形,知道三个角是直角,条件就够了.因为由四边形内角和可知,这时第四个角一定是直角.)

  五、例习题分析

  例1(补充)下列各句判定矩形的说法是否正确?为什么?

  (1)有一个角是直角的四边形是矩形; (×)

  (2)有四个角是直角的四边形是矩形; (√)

  (3)四个角都相等的四边形是矩形; (√)

  (4)对角线相等的四边形是矩形; (×)

  (5)对角线相等且互相垂直的四边形是矩形; (×)

  (6)对角线互相平分且相等的四边形是矩形; (√)

  (7)对角线相等,且有一个角是直角的四边形是矩形; (×)

  (8)一组邻边垂直,一组对边平行且相等的四边形是矩形;(√)

  (9)两组对边分别平行,且对角线相等的四边形是矩形. (√)

  指出:

  (l)所给四边形添加的条件不满足三个的肯定不是矩形;

  (2)所给四边形添加的条件是三个独立条件,但若与判定方法不同,则需要利用定义和判定方法证明或举反例,才能下结论.

  例2 (补充)已知 ABCD的对角线AC、BD相交于点O,△AOB是等边三角形,AB=4 cm,求这个平行四边形的面积.

  分析:首先根据△AOB是等边三角形及平行四边形对角线互相平分的性质判定出ABCD是矩形,再利用勾股定理计算边长,从而得到面积值.

  解:∵  四边形ABCD是平行四边形,

  ∴ AO= AC,BO= BD.

  ∵  AO=BO,

  ∴  AC=BD.

  ∴  ABCD是矩形(对角线相等的平行四边形是矩形).

  在Rt△ABC中,

  ∵  AB=4cm,AC=2AO=8cm,

  ∴ BC= (cm).

  例3 (补充) 已知:如图(1), ABCD的四个内角的平分线分别相交于点E,F,G,H.求证:四边形EFGH是矩形.

  分析:要证四边形EFGH是矩形,由于此题目可分解出基本图形,如图(2),因此,可选用“三个角是直角的四边形是矩形”来证明.

  证明:∵ 四边形ABCD是平行四边形,

  ∴ AD∥BC.

  ∴ ∠DAB+∠ABC=180°.

  又 AE平分∠DAB,BG平分∠ABC ,

  ∴ ∠EAB+∠ABG= ×180°=90°.

  ∴ ∠AFB=90°.

  同理可证 ∠AED=∠BGC=∠CHD=90°.

  ∴ 四边形EFGH是平行四边形(有三个角是直角的四边形是矩形).

  六、随堂练习

  1.(选择)下列说法正确的是( ).

  (A)有一组对角是直角的四边形一定是矩形(B)有一组邻角是直角的四边形一定是矩形

  (C)对角线互相平分的四边形是矩形 (D)对角互补的平行四边形是矩形

  2.已知:如图 ,在△ABC中,∠C=90°, CD为中线,延长CD到点E,使得 DE=CD.连结AE,BE,则四边形ACBE为矩形.

  七、课后练习

  1.工人师傅做铝合金窗框分下面三个步骤进行:

  ⑴ 先截出两对符合规格的铝合金窗料(如图①),使AB=CD,EF=GH;

  ⑵ 摆放成如图②的四边形,则这时窗框的形状是 形,根据的数学道理是: ;

  ⑶ 将直角尺靠紧窗框的一个角(如图③),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④),说明窗框合格,这时窗框是 形,根据的数学道理是: ;

  2.在Rt△ABC中,∠C=90°,AB=2AC,求∠A、∠B的度数.

【初中数学《矩形》优秀教案】相关文章:

1.初中数学《矩形》的教案设计

2.初中数学矩形教案范文

3.初中数学优秀教案

4.数学教案-矩形

5.小学生数学教案:矩形教案

6.初中数学《矩形和正方形的判定》教案设计

7.初中数学说课稿《矩形的判定》

8.数学教案-矩形 教学示例二

网站地图 捷豹彩票河北快三 捷豹彩票江苏快3 捷豹彩票广西快3
申博sunbet菲律宾官网 188申博太阳城 申博菲律宾申博客服 太阳城集团
彩123上海时时乐 杏彩北京赛车 博彩娱乐找哪里官网 爆大奖永利国际直营网
捷豹彩票广西快三 捷豹彩票澳洲3分彩 捷豹彩票北京快乐8 大发彩票五分彩
捷豹彩票幸运28 捷豹彩票北京快3 捷豹彩票江苏快3 捷豹彩票台湾5分彩
216SUN.COM 8TJS.COM XSB538.COM 166TGP.COM 567XTD.COM
520jbs.com 588XTD.COM 191tt.com 988XTD.COM 358PT.COM
986jbs.com 1112932.COM 179SUN.COM 976SUN.COM 3445111.COM
986jbs.com 195PT.COM S618T.COM XSB238.COM 587sj.com